RADAR IMAGING AND REMOTE SENSING

Anno accademico 2024/2025 - Docente: LORETO DI DONATO

Risultati di apprendimento attesi

Knowledge and fundamental skills related to radar systems, remote sensing, inverse scattering, and microwave imaging as well as notions on antenna arrays for radar systems.

Knowledge and understanding: Acquisition of basic principles of radar detection and signal processing.

Applying knowledge and understanding: Ability to quantitatively solve radar detection problems in different scenarios. Solution of inverse and optimization problems.

Making judgements: Ability to identify and compare the most appropriate methods for studying real problems.

Communication skills: Ability to present orally. Ability to write a lab report using technical language.

Learning skills: Learning assessment may also be carried out on-line depending on specific circumstances required

Modalità di svolgimento dell'insegnamento

Il corso prevede lezioni frontali e laboratori sperimentali

Prerequisiti richiesti

Basic knowledge of signals theory and processing, linear systems, propagation.

Frequenza lezioni

Sebbene la frequenza alle lezioni non sia obbligatoria è fortemente consigliata. Altamente raccomandata per le esperienze di laboratorio.

Contenuti del corso

Radar systems and processing (5 CFU – 35 h)

Elements of Wave Propagation and Antennas. Antennas Array. Radar Equations and Radar Cross Section. Range Resolution and Doppler Frequency.  Noise modeling in radar receinver. Signals and Networks Representation. Matched Filter and Ambiguity Function. Pulse Compression. Radar Detecion. Moving Target Indicator (MTI) and Constant False Alarm Rate (CFAR). FMCW and Monopulse Radar. 


Microwave imaging (1.5 CFU – 10.5 h)

Non linearity and ill-posedness. Linearized Scattering Models and Regularization. Singular Value Decomposition (SVD) and Gradient Based Optimization Techniques. Compressive Sensing.


Topics - in Collaboration with companies, universities and research centers (0.5 CFU – 3.5 h)

Ground Penetrating Radar / Synthetic Aperture Radar (SAR)

Automotive Radar / Direction Finding (Angle of Arrival)

Microwave Medical Imaging / Nuclear Magnetic Resonance (NMR)


Laboratory, practise and experience  (2 CFU – 30 h)

Radar data modeling and  processing with Matlab

Measurement data acquisition and processing with mm-Waves Radar Prototype

Radar Cross Section Measurement

Visit at Sigonella/Fontanarossa/Etna Radar station (in collaboration with ENAV–TechnoSky/US Navy/INGV)

Testi di riferimento

[1] Radar Priciples, Peyton Z. Peebles, John Wiley & Sons Inc

[2] Radar Systems Analysis and Design using MATLAB (III ed.), Bassem R. Mahafza, CRC Press

[3] Radar Principles, Nadav Levanov, Wiley

[4] Antenna Theory: analysis and design, C. A. Balanis, 4th edition, Wiley

[5] Microwave imaging, Matteo Pastorino, John Wiley & Sons

[6] Introduction to Inverse Problems in Imaging, M. Bertero, P. Boccacci, C. De Mol, Taylor & Francis

Programmazione del corso

 ArgomentiRiferimenti testi
1Introduction to the course - Syllabus and Exam modality Radar Topics - Technologies and Applications Antenna - Definition, Radiation Conditions, Resonance, Radiation Pattern, and Pattern Features - Antenna Array slides docente
2Practice: Antenna in Matlab (antenna toolbox)slides docente
3Dipole array (Lab.), DoA estimation (theory)slides docente
4Lab - Matlab: DoA estimation (Forward Problem)slides docente
5Lab - Matlab: DoA estimation (Algorithms - BARTLETT and MUSIC)slides docente
6Lab - Ansys: Dipole Antennaslides docente
7Lab - Ansys: Dipole Array - Example Patch con lossy substrate(Gain vs. DIrectivity), Patch arrayslides docente
8Radar sytems overwiew and hystory, Friis formula and Radar Equation§§ 1.1-1.4 [1]
9Radar Equations for different radar configurations, loss factors and noise, radar waveform and transmitted power (available instantaneous, peak, and averaged)§ 4.1 [1]
10Transmitted power of pulse train. Doppler effect§ 1.5 [1]
11Radar cross section: theory and matlab/ansys excercise, RCS of canonical shapes (metallic sphere and metallic rectangular plate)slides docente, [2]
12Radar Signals and Elementary Concept in Matlab slides docente, [2]
13Effect of target movement on radar signal (streaching factor and round trip delay modification)§ 1.6 [1] 
14Noise modelling for radar receiver, in incremental bandiwith. Effective noise temperature, noise figure (operating and standard). Noise modelling for rectangular filter bandwith, averaged temperature and noise figure. §§ 4.3-4.4 [1]
15Modelling of losses in radar receiver, antenna noise temperature§§ 4.5-4.6 [1]
16Radar Signals and Elementary Concept in Matlab - Continuous and Pulsed Wave, Pulse Train, Frequency Modulated Continuous Wave, Range Estimation, Unambiguous Range and Range Resolution, Doppler Estimationslides docente, [2]
17Measurement of Metalic Dipole with Balun in Anechoic Chamber - VNA Calibration, Scattering Coefficients, Pattern Visualization, and Polarization Pattern
18Complex and analytic radar signal. Analytic representation of networks and signals, impulse response and transfer function of analytic filter and their relationship.§§ 6.1 6.2 6.3 [1]
19Signal-to-noise ratio maximization, Matched filter.§ 6.6 [1]
20RCS Measurement in Anechoic Chamber: Rectangular aluminum taped target, aspect angle dependency, evaluation in Matlab and comparison with theoretical expectation
21FMCW Radar Theory - Transmitted Signal, Recieved Signal, Beat Signal, Range Doppler Mapping. FMCW Radar in matlabslides docente
22Matched filter for gaussian noise§ 6.6 [1]
23Matched filter response for stationary target. Examples. Ambiguity function§ 6.8 [1]
24Pulse compression. LFM pulse. Implementation of ambiguity function in matlab§ 6.8 [1]
25Radar detection probability. Probability of false alarm.§ 3.1 [3]
26PD for SNR >>1, approximated formula. Coherent integration.§ 3.1 [3]
27Non coherent integration. Statistical RCS targets. Rayligh and Chi-square fluctuating targets (Swerling Type).§ 3.2 [3]
28Binary integration. Doppler frequency pulse train processing. DFT § 3.2 [3] § 10.1 [3]
29DFT implementation with filter bank. Introduction to Clutter § 10.1 [3]
30TOPIC: SARslides  e appunti docente 
31TOPIC: Microwave imaging problem formulation and weak scattering linearization slides  e appunti docente 
32Rayleigh conditioin for smooth surface. Effect of the reflection from flat surface in radar received signal.§ 4 .1 - 4.2 [3]
33Pattern effect in radar equation for small grazing angle, clutter area contribution for small and long pulse period (limited beamwidth illumination), signal-to-clutter ratio. Clutter removal with single and double canceller line.§ 4-3 - 4.4 [3]
34Clutter removal, single line and double line canceller§ 11 [3]
35SAR Dopplerslides  e appunti docente 

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

Discussione orale e valutazione di un progetto


A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze. È possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del proprio Dipartimento

Esempi di domande e/o esercizi frequenti

Domande come da programma dettagliato