RADAR IMAGING AND REMOTE SENSING

Anno accademico 2023/2024 - Docente: LORETO DI DONATO

Risultati di apprendimento attesi

Knowledge and fundamental skills related to radar systems, remote sensing, inverse scattering, and microwave imaging as well as notions on antenna arrays for radar systems.

Knowledge and understanding: Acquisition of basic principles of radar detection and signal processing.

Applying knowledge and understanding: Ability to quantitatively solve radar detection problems in different scenarios. Solution of inverse and optimization problems.

Making judgements: Ability to identify and compare the most appropriate methods for studying real problems.

Communication skills: Ability to present orally. Ability to write a lab report using technical language.

Learning skills: Learning assessment may also be carried out on-line depending on specific circumstances required

Modalità di svolgimento dell'insegnamento

Il corso prevede lezioni frontali e laboratori sperimentali

Prerequisiti richiesti

Basic knowledge of signals theory and processing, linear systems, propagation.

Frequenza lezioni

Sebbene la frequenza alle lezioni non sia obbligatoria è fortemente consigliata. Altamente raccomandata per le esperienze di laboratorio.

Contenuti del corso

Radar Processing, Imaging and Systems (4 CFU – 28 h)

Elements of Wave Propagation and Antennas. Radar Equation and Radar Cross Section. Range Resolution and Doppler Frequency. Radar Equation with Jamming. Effects of the Earth’s Surface and Clutter. Signals and Networks Representation with Noise. Matched Filter and Ambiguity Function. Pulse Compression. Radar Detecion (MTI and CFAR). Doppler and Monopulse Radar.


Synthetic Aperture Radar (2 CFU - 14 h)

Electromagnetic Scattering Models from Surfaces. Resolution and Power Requirements. SAR Signal Processing. SAR Interferometry.


Microwave Imaging (1 CFU – 7h)

Non linearity and ill-posedness. Regularization and Linearized Scattering. Singular Value Decomposition (SVD). Compressive Sensing and Gradient Based Reconstruction Techniques.


Topics - in Collaboration with Companies, Universities and Research Centers (1 CFU – 7 h)

Automotive Radar / Direction Finding (Angle of Arrival)

Ground Penetrating Radar / Through-the-Wall Imaging

Microwave Medical Imaging / Nuclear Magnetic Resonance


Laboratory and on-field Experience (1 CFU – 25 h)

RADAR and SAR data processing with Matlab

Measurement data acquisition and processing with a mm-Waves Radar Prototype

Radar Cross Section Measurement in Anechoic Chamber

Visit at Sigonella/Fontanarossa/Etna Radar station (in collaboration with ENAV–TechnoSky/US Navy/INGV)

Testi di riferimento

[1] Radar Priciples, Peyton Z. Peebles, John Wiley & Sons Inc

[2] Radar Systems Analysis and Design using MATLAB (III ed.), Bassem R. Mahafza, CRC Press

[3] Radar Principles, Nadav Levanov, Wiley

[4] Antenna Theory: analysis and design, C. A. Balanis, 4th edition, Wiley

[5] Synthetic Aperture Radar Processing, G. Franceschetti and R. Lanari, CRC Press

[6] Introduction to Inverse Problems in Imaging, M. Bertero , P. Boccacci , C. De Mol, Taylor & Francis.

Programmazione del corso

 ArgomentiRiferimenti testi
1Introduction to elementary concepts of radars§§ 1.1-1.4 [1]
2Radar Equation(s) for typical radar topology and configurations.§ 4.1 [1]
3Overview and applications of radar and introduction to array antenna through DoAslide docente
4Introduction to Antenna (reflection coefficient and pattern features), Linear Array, Array Factor, and Beam Steering§ 6 [4] and slide docente
5Laboratory lesson on array matlab toolboxslide docente
6Radar Waveform and power associated, istantaneous power, averaged peak power, averaged trasmitted power§ 1.5 [1]
7Doppler shift derivation and received waveform§ 1.6 [1] § 1.2 [3]
8Laboratory on antennas reflection coefficient, pattern and polarization measurement in anechoic chamber 
9Laboratory on matlab on radar elementary concept: doppler and range resolutionslide docente
10Scattering cross section, total scattering cross section and radar cross section§ 5.1 [1]
11Radar cross section and polarization efficiency, examples on RCS and exercize on doppler shift§ 3.4 [1]
12Modelling of noise in radar receiver. Noise temperature. Incremental modelling in a small bandwith.§§ 4.3-4.4 [1]
13Noisy network and equivalent noiseless networks. Noise sources. Cascade networks property and noise figures. §§ 4.3-4.4 [1]
14Overall radar receiver noise modelling. Antenna noise temperature.§§ 4.5-4.6 [1]
15General expression of most radar waveform. Real, complex and analytic signal.§ 6.1 [1]
16Networks properties and relationship between real and analytical signal.§ 6.2 [1]
17Analytic filter and matched filter condition.§ 6.3 [1]
18Output of the matched filter for analityc and real signal for white gaussian noise.§ 6.6 [1]
19Laboratory and exercises on noise figure, noise temperature and radar equation slide docente
20Effect of target motion on radar signal § 1.6 [1] 
21Meaning of the ambiguity function and matched filter. Unambiguous range and range resolution. Pulse compression motivation.§ 6.8 [1]
22Single pulse radar dection. § 3.1 [3]
23Matched filter and ambiguity function (rect, gaussian, lfm chirp)§ 7.1-7.2 e slide docente
24Introduction to inverse problems in imagingslide docente
25DoA estimation problem formulation and algrithms, MUSIC BARTELETT AND CSslide docente 
26Laboratory on DoA estimationslide docente and matlab code
27Microwave imaging problem formulation and weak scattering linearizationslide docente
28Coherent and non-coherent pulse integration § 3.2 [3]
29Multiple scattering and Swerling type fluctuating targets. Scattering equations§ 2.6 [3] 
30 Pulsed radar doppler and range. DFT implemetation§ 10.1 [3]
31Introduction to clutter and multipath in radar§ 4 [3]
32FMCW radar slide docente

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

Discussione orale e valutazione di un progetto


A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze. È possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del proprio Dipartimento

Esempi di domande e/o esercizi frequenti

Domande come da programma dettagliato