Mathematical Analysis I F - O
Academic Year 2023/2024 - Teacher: SUNRA JOHANNES NIKOLAJ MOSCONIExpected Learning Outcomes
The aim of the course of Analisi Matematica I is to give the basic skills real and complex numbers, differential and integral calculus for real functions of one real variable.
In particular, the learning objectives of the course, according to the Dublin descriptors, are:
- Knowledge and understanding: The student will learn some basic concepts of Mathematical Analysis and will develop both computing ability and the capacity of manipulating some common mathematical structures, as complex numbers, limits, derivatives and integrals for real functions of one real variable, numerical series.
- Applying knowledge and understanding:The student will be able to apply the acquired knowledge in the basic processes of mathematical modeling of classical problems arising from Engineering.
- Making judgements: The student will be stimulated to autonomously deepen his/her knowledge and to carry out exercises on the topics covered by the course. Constructive discussion between students and constant discussion with the teacher will be strongly recommended so that the student will be able to critically monitor his/her own learning process.
- Communication skills: The frequency of the lessons and the reading of the recommended books will help the student to be familiar with the rigor of the mathematical language. Through constant interaction with the teacher, the student will learn to communicate the acquired knowledge with rigor and clarity, both in oral and written form. At the end of the course the student will have learned that mathematical language is useful for communicating clearly in the scientific field. Learning skills: The student will be guided in the process of perfecting his/her study method. In particular, through suitable guided exercises, he/she will be able to independently tackle new topics, recognizing the necessary prerequisites to understand them.
Course Structure
Required Prerequisites
Students should have a drive through logical reasoning and already master the basics of numbers, operations, polynomials and their algebraic properties, inequalities of various types and their solutions. All these arguments will be anyway reviewed and recalled during the various “Corsi Zero” taught at the beginning of the academic year. MOOC is strongly suggested as a way to review required mathematical notions.
Detailed Course Content
Sets of numbers. Real numbers. The ordering of real numbers. Completeness of R. Factorials and binomial coefficients. Relations in the plane. Complex numbers. Algebraic operation. Cartesian coordinates. Trigonometric and exponential form. Powers anndth roots. Algebraic equations.
Limits. Neighbourhoods. Real functions. Limits of functions. Theorems on limits: uniqueness and
sign of the limit, comparison theorems, algebra of limits. Indeterminate forms of algebraic and exponential type. Substitution theorem. Limits of monotone functions. Sequences. Limit of a sequence. Sequential characterization of a limit. Cauchy's criterion for convergent sequences. Infinitesimal and infinite functions. Local comparison of functions. Landau symbols and thei applications.
Continuity. Continuous functions. Sequential characterization of the continuity. Points of discontinuity. Discontinuities for monotone functions. Properties of continuous functions (Weierstrass's theorem, Intermediate value theorem). Continuity of the composition and the inverse functions.
Differential Calculus. The derivative. Derivatives of the elementary functions. Rules differentiation. Differentiability and continuity. Extrema and critical points. Theorems of Rolle, Lagrange and Cauchy. Consequences of Lagrange's Theorem. De L'Hôpital Rule. Monotone functions. Higher-order derivatives. Convexity and inflection points. Qualitative study of a function. Recurrences.
Integrals. Areas and distances. The definite integral. The Fundamental Theorem of Calculus. Indefinite integrals and the Net Change Theorem. The substitution rule. Integration by parts Trigonometric integrals. Trigonometric substitution. Integration of rational functions by partial fractions. Strategy for integration. Impropers integrals. Applications of integration.
Numerical series. Round-up on sequences. Numerical series. Series with positive terms. Alternating series. The algebra of series. Absolute and Conditional Convergence. The Integral Test and Estimates of Sums.
Textbook Information
In addition to the texts in Italian suggested above, see the English textbooks
J. Stewart, D. Clegg, S. Watson – Calculus. Early Transcendentals – Ninth Edition, Cengage Learning, Boston, USA, 2021.
H. D. Junghenn – A Course in Real Analysis – CRC Press, Boca Raton, FL, 2015.
Course Planning
Subjects | Text References | |
---|---|---|
1 | Number sets | [T1, E1]: Cap. 1; [T2, E2]: Cap. 1; [T3]: Cap. 1, 2; [T4]: Cap. 1; [E3]: Cap. 1; [E4]: Cap. 1, 2.; |
2 | Functions | [T1, E1]: Cap. 2, 4, 5; [T2, E2]: Cap. 1, 2, 4; [T3]: Cap. 3; [T4]: Cap. 2; [E3]: Cap. 2; [E4]: Cap. 3, 4. |
3 | Continuity | [T1, E1]: Cap. 6, 7; [T2, E2]: Cap. 5; [T3] Cap. 4; [T4]: Cap. 3; [E3]: Cap. 2; [E4]: Cap. 4. |
4 | Derivatives | [T1, E1]: Cap. 8, 9; [T2, E2]: Cap. 6; [T3] Cap. 5; [T4]: Cap. 4; [E3]: Cap. 3; [E4]: Cap. 5, 6. |
5 | Integrals | [T1, E1]: Cap. 10, 11; [T2, E2]: Cap. 7; [T3]: Cap. 7; [T4]: Cap. 1; [E3]: Cap. 5; [E4]: Cap. 1, 2. |
6 | Series | [T1, E1]: Cap. 11; [T2, E2]: Cap. 3; [T3]: Cap. 6; [T4]: Cap. 3; [E3]: Cap. 4; [E4]: Cap. 3 |