TEORIA DEI SEGNALI M - Z
Anno accademico 2021/2022 - 2° annoCrediti: 9
SSD: ING-INF/03 - Telecomunicazioni
Organizzazione didattica: 225 ore d'impegno totale, 146 di studio individuale, 49 di lezione frontale, 30 di esercitazione
Semestre: 2°
ENGLISH VERSION
Obiettivi formativi
L’insegnamento si propone di fornire agli studenti le nozioni di base della teoria della probabilità, dei segnali determinati e quindi di quelli casuali o aleatori.
In relazione ai Descrittori 1 (Conoscenza e comprensione) e 2 (Capacità di applicare conoscenza e comprensione) di Dublino, l’insegnamento si propone di fornire agli studenti una generale comprensione di semplici problemi descritti con metodi probabilistici. Inoltre si consentirà agli studenti di comprendere come caratterizzare segnali determinati con strumenti matematici opportuni. Infine dalla combinazione degli strumenti e degli approcci descritti sopra, gli studenti giungeranno a comprendere il concetto di processo reale aleatorio o casuale e delle sue caratteristiche applicando quindi le conoscenze acquisite alla soluzione di problemi ingegneristici reali.
In relazione ai Descrittori 3 (Autonomia di giudizio), 4 (Abilità comunicative) e 5 (Capacità di apprendimento) di Dublino, obiettivo dell’insegnamento è che gli studenti acquisiscano la capacita’ di analizzare e comprendere le caratteristiche di segnali determinati e aleatori. Lo studente sarà in grado di approfondire quanto imparato nel corso, e utilizzare le conoscenze di base come punto di partenza per studi successivi. Inoltre gli studenti, al superamento dell'esame, acquisiranno la capacita’ di formalizzare matematicamente i risultati di trasformazioni di sistemi lineari su segnali determinati e aleatori con la capacità di comunicare ai propri interlocutori, in modo chiaro e compiuto, le conoscenze acquisite. Infine gli studenti comprenderanno e sapranno formalizzare le trasformazioni operate dai componenti base di un sistema di comunicazione applicando le suddette conoscenze alla soluzione di problemi reali. Lo studente quindi si renderà autonomo dal docente, acquisendo la capacità di affinare ed approfondire le proprie conoscenze in modo autonomo e originale. Al completamento del corso, gli studenti dovranno aver acquisito capacità di indagine autonoma e critica nonchè di formalizzazione tramite metodi statistici di problemi reali (anche tramite l'ausilio di numerose esercitazioni effettuate durante il corso), e capacità di discutere e presentare i risultati di tali studi. Infine, dal possesso degli strumenti acquisiti durante il corso, lo studente sarà in grado di proseguire in modo autonomo nello studio delle altre discipline ingegneristiche con la padronanza anche di strumenti statistici d'indagine.
Modalità di svolgimento dell'insegnamento
L'insegnamento si articola in lezioni frontali ed esercitazioni alla lavagna (tradizionale o digitale condivisa in caso di erogazione del corso in modalità mista) e al calcolatore.
In caso di emergenza COVID le lezioni e le esercitazioni potranno eventualmente essere tenute su apposita piattaforma informatica indicata dall'Ateneo.
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.
Le lezioni sono fortemente partecipate con intervento misto del docente e degli studenti che sono invitati a svolgere, con il supporto del docente, le esercitazioni. Inoltre sono previste delle lezioni in cui si dimostra l'impiego di strumenti software es. Mathworks Matlab, per la risoluzione di problemi di teoria dei segnali. Infine sono previsti man mano seminari applicativi in cui si dimostra l'applicazione della teoria dei segnali e dell'indagine spettrale alla modulazione e filtraggio di segnali anche generati con apparecchiature di laboratorio (oscilloscopio filtri, modulatori/demodulatori).
Prerequisiti richiesti
Capacita’ di risoluzione di integrali, derivate e disequazioni, conoscenza di numeri complessi, circuiti elettrici elementari di tipo resistivo e RC.
Agli studenti e’ richiesto di effettuare un test di autovalutazione non vincolante all’inizio del corso.
Frequenza lezioni
La frequenza non è obbligatoria, seppure fortemente consigliata per sostenere la prova di esame. Statisticamente si rileva una maggior difficoltà nel superamente dell'esame da parte di quegli studenti che non seguano il corso. Inoltre, se le condizioni pandemiche lo consentiranno, si consiglia la partecipazione in presenza fisica alle lezioni. Si è infatti osservato come questo rappresenti un potente strumento di semplificazione dello studio per lo studente e di chiarimento e consolidamento delle competenze con conseguente maggior rapidità e ottime performance di superamento dell'esame.
Lo studente è fortemente invitato a frequentare almeno il 70% delle lezioni del corso per poter sostenere con profitto le prove d'esame.
La verifica dell’apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.
Contenuti del corso
Parte 1. Teoria della Probabilita
*Esperimento aleatorio; probabilita’, *teorema di Bayes; *teorema della probabilita’ totale; *Variabili aleatorie, *funzione densita’ di probabilita’ e distribuzione cumulativa;* trasformazione di una variabile aleatoria; *indici caratteristici di una distribuzione; *variabile aleatoria Gaussiana, altre variabili aleatorie notevoli, *teorema del limite centrale.
Parte 2. Analisi dei segnali determinati periodici e aperiodici a tempo continuo
*Definizione ed esempi di segnali; *proprieta’ elementari dei segnali; Analisi armonica dei segnali periodici; *spettri di ampiezza e fase e loro proprieta’; segnali pari, dispari, alternativi; sintesi di un segnale a partire da un numero limitato di armoniche. *L’integrale di Fourier; *proprieta’ della trasformata di Fourier; teoremi sulla trasformata di Fourier (linearita’, dualita’, ritardo, cambiamento di scala, modulazione, derivazione, integrazione, prodotto, convoluzione); *trasformata di Fourier della funzione generalizzata impulsiva delta di Dirac e trasformate notevoli; *Periodicizzazione e formule di Poisson; *Teorema del campionamento.
Parte 3.Sistemi lineari e stazionari, e trasformazioni di segnali determinati
*Concetto di “sistema” e trasformazione di un segnale; proprieta’ dei sistemi monodimensionali; *caratterizzazione e analisi dei sistemi lineari stazionari (risposta impulsiva e risposta in frequenza); ; decibel; sistemi in cascata e in parallelo; *Filtri ideali passa_basso, *passa_alto, passa_banda,elimina_banda; flltri reali; banda di un segnale e di un sistema; *cenni sulle distorsioni introdotte da filtri; *Teorema di Parseval e *densita’ spettrale di energia; densita’ spettrale di potenza; *funzione di autocorrelazione; teorema di Wiener-Khintchine; densita’ spettrale di potenza di segnali periodici.
Parte 4. Segnali aleatori e trasformazioni elementari di segnali aleatori
*Processi aleatori tempo continuo; *processi aleatori parametrici; Indici statistici di I e II ordine di un processo aleatorio; *Stazionarieta’; Filtraggio di un processo aleatorio stazionario in senso lato; densita’ spettrale di potenza di un processo a tempo continuo stazionario; *Rumore bianco e processi aleatori gaussiani a tempo continuo; *Ergodicita’.
*: Contenuti minimi richiesti
Argomento |
CFU/ORE |
Riferimenti |
Teoria della Probabilita Esperimento aleatorio; probabilita’ , teorema di Bayes; teorema della probabilita’ totale; Variabili aleatorie, funzione densita’ di probabilita’ e distribuzione cumulativa; trasformazione di una variabile aleatoria; indici caratteristici di una distribuzione; variabile aleatoria Gaussiana e altre variabili notevoli (esponenziale, di Poisson, Bernoulli, uniforme), Teorema del limite centrale
|
2,5cfu/21,5 ore |
1) |
Analisi dei segnali determinati periodici a tempo continuo Definizione ed esempi di segnali; proprieta’ elementari dei segnali; Analisi armonica dei segnali periodici; spettri di ampiezza e fase e loro proprieta’; segnali pari, dispari, alternativi; sintesi di un segnale a partire da un numero limitato di armoniche.
|
1cfu/7 ore |
1) e 2) |
Analisi dei segnali determinati aperiodici a tempo continuo L’integrale di Fourier; proprieta’ della trasformata di Fourier; teoremi sulla trasformata di Fourier (linearita’, dualita’, ritardo, cambiamento di scala, modulazione, derivazione, integrazione, prodotto, convoluzione; trasformata di Fourier della funzione generalizzata impulsiva delta di Dirac e trasformate notevoli; Periodicizzazione e formule di Poisson; Teorema del campionamento. |
2,5cfu/21,5 ore |
1) e 2) |
Sistemi lineari e stazionari, e trasformazioni di segnali determinati Concetto di “sistema” e trasformazione di un segnale; proprieta’ dei sistemi monodimensionali; caratterizzazione e analisi dei sistemi lineari stazionari (risposta impulsiva e risposta in frequenza); ; decibel; sistemi in cascata e in parallelo; Filtri ideali passa_basso, passa_alto, passa_banda,elimina_banda; flltri reali; banda di un segnale e di un sistema; cenni sulle distorsioni introdotte da filtri; Teorema di Parseval e densita’ spettrale di energia; densita’ spettrale di potenza; funzione di autocorrelazione; teorema di Wiener-Khintchine; densita’ spettrale di potenza di segnali periodici. |
1,5 cfu/ 14,5 ore |
1) |
Segnali aleatori e trasformazioni elementari di segnali aleatori Processi aleatori tempo continuo; processi aleatori parametrici; Indici statistici di I e II ordine di un processo aleatorio; Stazionarieta’; Filtraggio di un processo aleatorio stazionario in senso lato; densita’ spettrale di potenza di un processo a tempo continuo stazionario; Rumore bianco e processi aleatori gaussiani a tempo continuo; Ergodicita’. |
1,5cfu/14,5 ore |
1) e 2) |
Testi di riferimento
1) Marco Luise, Giorgio Vitetta: Teoria dei Segnali, Mc Graw Hill
2) Leon Couch: Fondamenti di Telecomunicazioni, VII Ed. Pearson, Prentice Hall
Programmazione del corso
Argomenti | Riferimenti testi | |
---|---|---|
1 | Si veda quanto riportato nel syllabus | 1) e 2) |
2 | Teoria della Probabilità, Variabili Aleatorie | Marco Luise, Giorgio Vitetta: Teoria dei Segnali, Mc Graw Hill |
3 | Segnali determinati | Leon Couch: Fondamenti di Telecomunicazioni, VII Ed. Pearson, Prentice Hall |
4 | Processi aleatori | 1) Marco Luise, Giorgio Vitetta: Teoria dei Segnali, Mc Graw Hill 2) Leon Couch: Fondamenti di Telecomunicazioni, VII Ed. Pearson, Prentice Hall |
Verifica dell'apprendimento
Modalità di verifica dell'apprendimento
PROVA D’ESAME |
Progetti e/o Elaborati |
Non sono previsti progetti o elaborati |
Prove in itinere |
E' solitamente prevista una prova in itinere finalizzata a testare la capacita’ di trattare problemi descritti in termini probabilistici; la prova in itinere ha durata di due ore ed e’ costituita da due esercizi e due domande a risposta aperta. La prova in itinere, se superata, esonera lo studente che si presenti alla prima sessione di esami della parte di esame finale relativa alla Teoria delle Probabilita’ e variabili aleatorie. Il voto riportato nella prova in itinere ha peso 1/2 nella valutazione finale. In caso di emergenza COVID, le modalità di esame potrebbero subire delle variazioni e saranno comunicate prontamente dal docente. La verifica dell'apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere. |
|
Appelli |
Esame costituito da due parti: scritto con esercizi e domande orali e colloquio orale (opzionale o meno in base alla modalità di esame legata alla contingenza pandemica) |
Esempi di domande e/o esercizi frequenti
Esempi di esercizi Reperibili su Studium
Esempi di domande orali:
TEORIA DELLA PROBABILITA' E VARIABILI ALEATORIE
- Esperimento aleatorio
- Concetto di probabilita’
- Teorema di Bayes;
- Teorema delle probabilita’ totali;
- Variabili aleatorie, funzione densita’ di probabilita’ e distribuzione cumulativa, indici caratteristici;
- Trasformazione di una variabile aleatoria;
- Indici caratteristici di una distribuzione;
- Variabile aleatoria uniforme
- Variabile aleatoria Gaussiana
- Variabile aleatoria esponenziale
- Variabile aleatoria di Poisson
- Variabile aleatoria di Bernoulli
- Teorema del limite centrale
- Coppie di variabili aleatorie
- Correlazione e indipendenza tra variabili aleatorie
- Variabili aleatorie congiuntamente Gaussiane
- Teorema del limite centrale
SEGNALI DETERMINATI
- Definizione ed esempi di segnali determinati ed aleatori
- proprieta’ elementari dei segnali
- Analisi armonica dei segnali periodici
- spettri di ampiezza e fase e loro proprieta’
- segnali pari, dispari
- sintesi di un segnale a partire da un numero limitato di armoniche
- Trasformata di Fourier di un segnale determinato
- Proprieta’ della trasformata di Fourier e teoremi (linearita’, dualita’, ritardo, cambiamento di scala, modulazione, derivazione, integrazione, prodotto, convoluzione
- trasformata di Fourier della funzione generalizzata impulsiva delta di Dirac e trasformate notevoli (funzione gradino e funzione segno); Periodicizzazione e formule di Poisson;
- Teorema del campionamento
- Teorema di dimensionalità
- Concetto di “sistema” e trasformazione di un segnale
- proprieta’ dei sistemi monodimensionali
- caratterizzazione e analisi dei sistemi lineari stazionari (risposta impulsiva e risposta in frequenza);
- decibel
- sistemi in cascata e in parallelo
- Filtri ideali passa_basso, passa_alto, passabanda,eliminabanda; filltri reali
- banda di un segnale e di un sistema;
- cenni sulle distorsioni introdotte da filtri;
- Teorema di Parseval e densita’ spettrale di energia;
- densita’ spettrale di potenza;
- funzione di autocorrelazione;
- teorema di Wiener-Khintchine;
- Teorema dello sviluppo su base ortogonale
- Sviluppo in serie di Fourier per segnali periodici
SEGNALI ALEATORI
- Processi aleatori tempo continuo
- Processi aleatori parametrici
- Processo armonico
- Indici statistici di I e II ordine di un processo aleatorio
- Stazionarieta’ in senso stretto e in senso lato
- Energia e potenza di un processo
- Densita’ spettrale di potenza e funzione di autocorrelazione di un processo stazionario
- Correlazione tra processi aleatori
- Rumore bianco e processi aleatori gaussiani a tempo continuo
- Rumore termico
- Ergodicita’
- Filtraggio di un processo aleatorio stazionario in senso lato