PROGETTAZIONE INTEGRATA CAD/CAE

Academic Year 2025/2026 - Teacher: MICHELE CALI'

Expected Learning Outcomes

The student will acquire theoretical and practical skills in the field of 3D solid modelling. Know current computer-aided design techniques and methodologies in parametric solid modelling. Know how to use specific software for the design of mechanical components using integrated CAD-FEM, CAD-Multibody e CAD-CFD. The knowledge acquired will enable the development of technological solutions aimed at fostering innovation (Goal 9: Industry, Innovation and Infrastructure), promoting the efficient and responsible use of resources (Goal 12: Responsible Consumption and Production), and reducing environmental impact through designs with lower energy consumption and reduced emissions (Goal 13: Climate Action), in alignment with the 2030 Agenda.

Course Structure

Frontal teaching and use of specific software for integrated CAD-FEM, Multibody and CFD design.

Required Prerequisites

Knowledge of Industrial Technical Drawing, Linear Algebra and Geometry, and the basics of mechanics.

Attendance of Lessons

Attendance obligation

Detailed Course Content

Introduction to geometric modeling of machines. CAD in the design cycle. Comparison between conventional design approach and CAD-based design. Generations of CAD systems and integrated CAD-CAE systems.

Theory: 2 hours – Practice: 2 hours

 

Parametric forms and cubic polynomial curves. Geometric shapes in space. Lagrange method and Hermite method. Interpolating and approximating curves. Continuity conditions.

Theory: 3 hours – Practice: 3 hours

 

Bézier curves, cubic Bézier curve. Splines, cubic spline. B-Splines, introduction to NURBS. Graphical and analytical construction of a cubic polynomial curve.

Theory: 3 hours – Practice: 3 hours

 

Mathematical description of surfaces applied to geometric modeling. Ruled surfaces. Bilinear surfaces. Bicubic surfaces. Bézier surfaces. B-spline surfaces. Use of NURBS for conic construction. Torsion vector.

Theory: 3 hours – Practice: 3 hours

 

Solid modeling techniques. Three-dimensional geometric modeling. Wireframe. Geometric and topological data. Properties of r-sets. Operations on primitives. Constructive solid geometry. Internal representation. Solids of revolution and extrusion. Boundary evaluation. B-Rep modeling. Topological structure. Introduction to advanced modeling functions: blending, lofting, skinning, local operations, shelling, hollowing.

Theory: 4 hours – Practice: 4 hours

 

Associative geometry. Constraint acquisition. Parametric or procedural approach, variational approach. Mathematical expression of constraints. Interactive systems.

Theory: 2 hours – Practice: 2 hours

 

Solid modelers. Variable-driven modeling. Features and feature-based modeling. Advanced modeling functions. Hybrid modelers.

Theory: 2 hours – Practice: 2 hours

 

Virtual prototyping. Product simulation. Process simulation. Electronic data management. CAD-CAE modeling techniques.

Theory: 2 hours – Practice: 2 hours

 

Rapid prototyping.

Theory: 1 hour – Practice: 1 hour

 

Integrated CAD-CAE design.

Theory: 2 hours – Practice: 2 hours

 

Integrated CAD-FEM design techniques.

Theory: 2 hours – Practice: 2 hours

 

Integrated CAD-Multibody design techniques.

Theory: 1.5 hours – Practice: 1.5 hours

 

Integrated CAD-CFD design techniques.

Theory: 1.5 hours – Practice: 1.5 hours

Textbook Information

  1. Lecture notes.
  2. M.E. Mortenson, Modelli Geometrici in Computer Graphics – MCGRAW-HILL (TESTO DI RIFERIMENTO - GEOMETRIE PER IL CAD)G. Farin, Curves and Surfaces for CAGD, a Practical Guide - Fifth Edition, Morgan Kaufmann Series in Computer Graphics.
  3. G. Farin, Curves and Surfaces for CAGD, a Practical Guide - Fifth Edition, Morgan Kaufmann Series in Computer Graphics.
  4. F. Caputo, M. Martorelli, Disegno e progettazione per la gestione industriale, Ed. Scientifiche Italiane.
  5. Golovanov, N. Geometric Modeling, CreateSpace Independent Publishing Platform, 2014.
  6. Salomon, D. (2007). Curves and surfaces for computer graphicsSpringer Science & Business Media.
  7. K. Lee, Principles of CAD/CAM/CAE Systems, Addison-Wesley.
  8. Belingardi, G. (1995). Il metodo degli elementi finiti nella progettazione meccanica. Libreria editrice universitaria Levrotto & Bella.
  9. O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu : The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann (2005).
  10. C. Gianini, Ingegneria strutturale computazionale. Calcolo automatico di strutture meccaniche, Idelson - Gnocchi.
  11. Pennestri E. (2002). dinamica tecnica e computazionale sistemi multibody.
  12. Shabana, A. A. (2020). Dynamics of multibody systems. Cambridge university press.
  13. Gibson, I., Rosen, D. W., Stucker, B., Khorasani, M., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies (Vol. 17, pp. 160-186). Cham, Switzerland: Springer.

Course Planning

 SubjectsText References
1Introduction to geometric modelling of machines. CAD in the design cycleGolovanov, N. Geometric Modeling, CreateSpace Independent Publishing Platform,2014.Salomon, D (2007). Curves and surfaces for computer graphics. Springer Science & Business MediaK. Lee, Principles of CAD/CAM/CAE Systems, Addison-Wesley, 1999
2Parametric forms and cubic polynomial curvesGolovanov, N. Geometric Modeling, CreateSpace Independent Publishing Platform,2014.Salomon, D (2007). Curves and surfaces for computer graphics. Springer Science & Business MediaK. Lee, Principles of CAD/CAM/CAE Systems, Addison-Wesley, 1999
3Bèzier curves, the cubic Bèzier curve. Splines, the cubic spline. The B-Splines, hints on NURBS. Graphical and analytical construction of a cubic polynomial curve.Golovanov, N. Geometric Modeling, CreateSpace Independent Publishing Platform,2014.Salomon, D (2007). Curves and surfaces for computer graphics. Springer Science & Business MediaK. Lee, Principles of CAD/CAM/CAE Systems, Addison-Wesley, 1999
4The mathematical description of surfaces applied to geometric modellinGolovanov, N. Geometric Modeling, CreateSpace Independent Publishing Platform, 2014.
5Solid modelling techniquesGolovanov, N. Geometric Modeling, CreateSpace Independent Publishing Platform, 2014.
6Associative geometryG. Farin, Curves and Surfaces for CAGD, a Practical Guide - Fifth Edition, Morgan Kaufmann Series in Computer Graphics.
7Solid modellersG. Farin, Curves and Surfaces for CAGD, a Practical Guide - Fifth Edition, Morgan Kaufmann Series in Computer Graphics.
8Virtual prototypingCaputo, F., & Martorelli, M. (2003). Disegno e progettazione per la gestione industriale (Vol. 1, pp. 1-399). ITA.Gibson, I., Rosen, D. W., Stucker, B., Khorasani, M., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies (Vol. 17, pp. 160-186). Cham, Switzerland: Springer.
9Integrated CAD-FEM design techniquesBelingardi, G. (1995). Il metodo degli elementi finiti nella progettazione meccanica. Libreria editrice universitaria Levrotto & Bella.
10- Integrated CAD-Multibody design techniquesPennestrì, E. (2002). Dinamica tecnica e computazionale-sistemi multibody.Shabana, A. A. (2020). Dynamics of multibody systems. Cambridge university press.
11Integrated CAD-CFD design techniques - Integrated CAD-Multibody design techniquesPennestrì, E. (2002). Dinamica tecnica e computazionale-sistemi multibody.Shabana, A. A. (2020). Dynamics of multibody systems. Cambridge university press.

Learning Assessment

Learning Assessment Procedures

The oral test is intended to verify that the theoretical and practical knowledge and skills in the field of 3D solid modelling and integrated CAD-CAE design have been acquired.

The practical test is intended to verify knowledge of integrated CAD-FEM, Multibody and CFD techniques using the PTC Creo modeller and the parametric modeller Catia.

Examples of frequently asked questions and / or exercises

 1 Parametric forms and polynomial curves;

 2 Lagrange's method and Hèrmite's method;

 3 Interpolating curves and approximating curves. Continuity conditions;

 4 Bèzier curves;

 5 The NURBS curves;

 6 The mathematical description of surfaces;

 7 The torsion vector;

 8 Solid modelling techniques;

 9 Operations on primitives;

 10 Constructive solid geometry;

 11 Modelling functions (blending, lofting, skinning, local operations, shelling, hollowing);

 12 Associative geometry. Parametric or procedural approach, variational approach;

 13 Solid modellers. Variable-driven. Features and feature-based modelling. Advanced modelling functions;

 14 CAD-CAE modelling techniques;

 15 Integrated CAD-CAE design;

 16 Finite element modelling techniques;

 17 Multibody modelling techniques;

 18 Rapid prototyping.

19 Reverse Engineering techniques.